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We propose a method for the numerical calculation of the nonsteady exchange of 
mass and heat in the flow of a chemically reactive coolant in channels of com- 
plex shape. As an example we present the results from the calculations of 
heat and mass exchange in the laminar flow of dissociating N204 for a triangular 
fuel-cell cluster. 

The study of the processes involved in convective heat and mass exchange in the flow 
of chemically reactive gases in channels is made markedly more difficult by nonlinearities 
resulting from the presence of chemical sources of mass and heat, the dependence of thermo- 
physical and coolant transport properties on temperature, pressure, and the composition of 
the mixture, the complex nature of the chemical interactions, the processes of diffusion, 
and on the heat conduction and hydrodynamics of the flow [I]. 

The majority of publications at the present time are devoted to the results of theoreti- 
cal [i] and experimental [2] studies into stationary heat and mass exchange. The numerical 
studies are associated primarily with the application of the method of finite differences 
(MFD) [i, 3] and the method of finite elements (MFE) [4, 5]. The unique features of non- 
steady heat and mass exchange processes for such flows have not yet been studied adequately. 
The article [6] is devoted to experimental studies of nonsteady flows of dissociating N204 
coolant. 

The present paper gives results from numerical investigations into the nonstationary 
transfer of heat and mass in the longitudinal streamlining of fuel-cell clusters by a lami- 
nar flow of dissociating nitrogen tetroxide. 

Let us examine a model of the active zone of a nuclear reactor, which is formed by a 
bundle of heat-releasing rods surrounded by a noncatalytic shell, these rods positioned in 
a checkerboard array and streamlined with a longitudinal flow of dissociating N204 (Fig. i). 
Let us take into consideration the simultaneous occurrence of the I and II stages of the 
dissociation, i.e., the equilibrium stage N204 $ 2NO 2 and the essentially nonequilibrium stage 
2NO 2 $ 2NO + 02, assuming that the "frozen in" components of the thermophysical and transport 
properties of the mixture are constant. Since the nitrogen oxide and the molecular oxygen 
exhibit similar molecular weights and parameters of intermolecular interaction, they exhibit 
virtually no diffusion separation within the flow, i.e., the stoichiometric relationship is 
maintained between the concentrations of the components NO and 02: C 3 = 2m3C4/m 4. 

The velocity profile in the hydrodynamically stabilized stationary laminar flow is de- 
termined from the solution of the Poisson equation 

= (1) 
ax 2 Off ~l 

w i t h  b o u n d a r y  c o n d i t i o n s  o f  a d h e s i o n  a t  t h e  s t r e a m l i n e d  s u r f a c e  and c o n d i t i o n s  o f  impermea- 
b i l i t y  on t h e  symmetry  l i n e s  which  form t h e  c o n t o u r s  o f  t h e  r e g i o n  f o r  which t h e s e  c a l c u l a t i o n s  
a r e  b e i n g  c a r r i e d  o u t .  

Le t  us p r e s e n t  a s y s t e m  of  e q u a t i o n s  t o  d e s c r i b e  t h e  n o n s t a t i o n a r y  c o n j u g a t e  h e a t  and 
mass exchange  f o r  t h i s  f l o w ,  a s y s t e m  c o n s t r u c t e d  w i t h  p r o v i s i o n  f o r  g e n e r a l l y  a c c e p t e d  a s -  
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Fig. i. Area of design: i) fuel core ~; 
2) fuel cell shell ~b; 3) coolant flow re- 
gion ~c" Relative fuel-cell grid spacing 

= r3/(r I + 6). 

sumptions [7], in particular, the assumption that the transfer of heat and mass along the 
axis of the channel, as a result of heat conduction and diffusion, is small in comparison 
with convective heat and mass transfer. 

The equation of energy conservation in the flow region: 

(cpl + cr,) p ~ + (cpt + cp,) ~= ,OT 
o'~ Oz = Ox (~'~ + c,,,oO,)-~x + 

o( �88 
Tu (~' + e,,,pD,) - -  (AH,,,,r~ + ~ - I , , 0  sr �9 

mr 

(2) 

The equations of heat conduction in the shell and in the fuel core of the fuel cell, 
without taking into consideration the axial component, owing to the great length of the fuel 
assembly and the limited diameter of the rods are as follows: 

OTb - ~ -  ~b ( 02Tb ~02Tb ] 

aTe . ;~e( o,r~ ~O'Tc 1 
0"~ k Ox~ "}- O9"Z ) -t-q~('~)" c pepc (4) 

The equation for the conservation of the oxygen mass is 

f,o. ~ '  +pO,,,. OC, = oO, I ~ ~+~ O~C, i 
Oz t, Ox = - '  O~ / + A. (5) 

Equations (1) and (5) are  enhanced by means of the fol lowing r e l a t i o n s h i p s  [1]: 

C p r  ~ -  
AH~, 

K~H \ mt ] ] ' 

1 2 m,) 
mlRT2 ~ -}- C~---~ ml 

c; +"ram; 
~P~ = 1 2 m ~' I _  

C,  ~- C2 ml �9 ~ 

mt rn~ m~ ] �9 

The concentrations of NO 2 and N204 are determined from the following formulas, respective- 
ly: 

c~= ~-c, .,,c. c~=; "~  ----~(~")'~ 
m~ ' K,I \ m2 ! ~" 

The latter relationship follows from the condition of equilibrium for stage I of the nitrogen 
tetroxide dissociation reaction. 
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The thermophysical and transport properties of the mixture and the velocity and equilib- 
rium constants of the reactions are calculated on the basis of relationships found in [i, 7]. 

At the initial instant of time and at the inlet to the channel we have specified con- 
stant temperature T o and concentration C40 profiles. We required a condition of thermal in- 
sulation at the symmetry lines bounding the calculation region, and conditions of conjugacy 
between the temperatures and heat flows at the boundaries of media separation, i.e., between 
the core and the shell and between the shell and the coolant. For the equation of mass trans- 
port (5) we impose the condition of equality to zero for the normal derivative at the boun- 
dary of the flow region. 

System of equations (1)-(5) in dimensionless form has the following form: 

O2W a2W 
F - -  = - - 3 2 K ~ ,  (6 )  

OX 2 OY~ 

OOa 
K, oa(l +@)-0-~o +K~sPeW(1 +q~) OOaOZ -- 

ao a --=Kka (~X ((I-}-~DLel) ~OaOZ J ~ ~- ~a ((i _~(i]Lel)__~_~))__Qa ' 
(7 )  

/Lob aOb = K~b ( moo O'Ob 
O~----X P x  f +  oY" ] ' (8) 

aFo < 7 k 7  + 7~7 +Oo, (9) 

aC ac { a2C c]2c 
Kcpa ~ + K~a Pe 117 OZ - K~ Le~ [ - - ~  -}- aY  ~ } + O~. (10) 

S i n c e  t h e  h y d r o d y n a m i c  p r o b l e m  i s  i n d e p e n d e n t  o f  t h e  h e a t  and mass  e x c h a n g e  p r o b l e m ,  
t h e  e q u a t i o n  o f  m o t i o n  and t h e  e q u a t i o n s  o f  h e a t  and mass t r a n s p o r t  can  be s o l v e d  s e p a r a t e l y .  

To s o l v e  t h e  s y s t e m  o f  e q u a t i o n s  ( 6 ) - ( 1 0 )  w i t h  t h e  d e s c r i b e d  i n i t i a l  and b o u n d a r y  con -  
d i t i o n s  we make u s e  b o t h  o f  t h e  MFE and MFD m e t h o d s ,  t h e  f o r m e r  f o r  t h e  a p p r o x i m a t i o n  o f  t h e  
s o u g h t  f u n c t i o n s  f rom t h e  c o o r d i n a t e s  o f  t h e  l a t e r a l  c r o s s  s e c t i o n  o f  t h e  c h a n n e l ,  and t h e  
l a t t e r  f o r  t h e  a p p r o x i m a t i o n  o f  t h e  t i m e  d e r i v a t i v e s  and t h e  a x i a l  t r a n s p o r t  t e r m s .  

The r e g i o n  f o r  wh ich  t h e s e  c a l c u l a t i o n s  a r e  b e i n g  c a r r i e d  o u t  i s  s e p a r a t e d  i n t o  m t r i -  
a n g u l a r  s i m p l e x  e l e m e n t s  w i t h  t h r e e  n o d e s  i n  e a c h ,  f o r  a t o t a l  o f  n n o d e s .  The c o o l a n t  f l o w  
r e g i o n  h a s  m 2 e l e m e n t s  and n 2 n o d e s ,  and t h e  f u e l - c e l l  r e g i o n  h a s  m t and n z e l e m e n t s ,  r e -  
s p e c t i v e l y ,  w i t h  m = m 1 + m 2 and n = n z + n 2. F o r  p u r p o s e s  o f  i n t e r p o l a t i n g  t h e  v e l o c i t y ,  
t e m p e r a t u r e ,  and c o n c e n t r a t i o n  f o r  t h e s e  e l e m e n t s  we s e l e c t  l i n e a r  b a s i s  f u n c t i o n s  ( f o r m  f u n c -  
t i o n s )  IN] .  These  f u n c t i o n s  a r e  r e p r e s e n t e d  i n  t h e  fo rm:  

~'(x,  Y) = [~{,oc~}, 
o(x, Y, z, Fo)= [N]{~(~)}, 

C (X, Y, Z, Fo)= [N]{c~k~}, 

where {w(k)}, {0(k)}, and {c (k)} represent the values of the velocity, the temperature, and 
the concentration, respectively, at the nodes of the 6k element. 

Following the procedure of the Bubnov-Galerkin method, we will require satisfaction of 
the condition of orthogonality for the discrepancies which arise on substitution into the 
original equations of the interpolation expressions for W, 9, and C, to the basis functions: 

[~[N]r r 02~' O~W ) 
�9 (7~ -+ 7~+ a2K* d~ =~ (11) 8h 

1247 



_Q~_K~o=(I_}_(I) ) aO= Kz=PeW(1-F~) ao= ~dah=O ' 
a Fo OZ ] 

6, \ ax2 + a - ~ /  - -  K~.b a ~ o  ) risk = O, 

+ - ) e% = o, 

(13) 

(14) 

#[ [Nlr ( K~a Le~ ( - ~  + -~y2 ) + O"=-- 
(15) 

--K~p~ OFoO-'-~C --Kz~PeW ozOC ) d6~ = O. 

Equat ions  (11) ,  (12) ,  and (15) have been de te rmined  in t he  f low r e g i o n ,  whi le  Eq. (13) has 
been de te rmined  f o r  t h e  s h e l l ,  and Eq. (14) in t he  r eg ion  of  t he  core .  

Applying t h e  O s t r o g r a d s k i i - G a u s s  formula  and s ~ i n g  e x p r e s s i o n  (11) over  a l l  e lements  
of  t he  coo lan t  f low r e g i o n ,  we o b t a i n  a system of  l i n e a r  a l g e b r a i c  equa t ions  fo r  the  v e l o c i t y  
va lues  a t  t he  nodes:  

[D]{~} = { F } .  

Here [D] is a quadratie matrix With dimensions of n 2 x n 2 and elements 

(16) 

( O[N] r O[N] + O[N] r a[N]'~d%, 

{F} is a vector of length n= with the components 

{]~,} = - -  32K,z~  ; [N I  r d.6k. 
6 h 

After modification of matrix [D], associated with the realization of the boundary condi- 
tion of adhesion for velocity at the surface of the shell (the symmetry condition 8W/Sn = 
0 on application of the Bubnov-Galerkin method is satisfied automatically), system (16) is 
solved by the Gaussian elimination method. 

In analogous fashion, summing expression (12) over the elements of the flow region, ex- 
pression (13) over the shell, and expression (14) over the fuel core, and expression (15) 
over the elements of the flow region, we obtain a system of partial differential equations 
of the hyperbolic type relative to the temperature values at the nodes of the entire calcula- 
tion region and relative to the concentration values at the nodes of the flow region: 

[A1] ~{~ ' }  ..]..[B1 ] a{ '~}  "~-'[.~1| {~'}-[-{G1}, (17)  
OFo OZ 

IAJ a{c} + [ e j  a(c} = VR~] {c} + {~} .  (18) 
aFo az 

Here [Az], [Bz], [R z] and [A2], [B2], [R 2] represent quadratic matrices of dimension n x n 
and n 2 x n=, respectively, and {Gl} and {G2} are vectors of length n and n2. The elements 
of the matrix and of the vectors are determined from the formulas 

[ Ko.S ~[~r[~d%, X, }'EnoUnb, 
[a,.l!--, ~ 

Kop.Z J'I.,Vlr [ ~  (I + {Ooo} [~)'.d,%. X. ',"E ~.~' 
8k 

[btu] = { O, X, Y'E~U~,, K~,=PeZs~,!IN]r[,,V] {(~ ["Vl(I b {~k)}'["V|)d8k' X, Yl([f~=, 
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Fig.  2. D i s t r i b u t i o n  of mean-mass flow tempera ture  0 (1 -6 ) ,  
average temperature 0 w (7, 8) about the perimeter of the 
fuel-shell surface, and mean-mass concentration Cu of oxygen 
in the mixture: a) linear release of heat; b) constant. 
T o = 500 K, P = 12 MPa: i) C40/Cuequ = 0.80, Z = I0; 2) 
0.80 and 50; 3) 1.00 and i0; 4) 1.00 and 50; 5) i. I0 and i0; 
6) 1.10 and 50; 7) 0.80 and 10; 8) C~o/C4equ = 1.10; Z = 10. 

( ~ i ~  T oi/71 + o ~ T  o(/7~d8~ ' x,  rehouse,  
- K ~  .[[/Tj ~ ~ . - ~  ox ov ~ I 

~h �9 

[rml = { _ ~ ( , ~ :  i/7] r ( 0[Aqr ( 0 [~  ,+ 0 [ ~  ],q_ 
' " OX ~ '  Ira{O("'} Le, y l 

q_ 01~1 r ' 0[~] 4. O[N] ~ 
Or ~ [/V] {O( h'} L% ~ ] ]  dSa, X, YEn., 

E ~[N] r [NI {q~h)}dSh, X, Y6 f~ ,  
6k 

{g~} = 0, X, Y 6 t2b, 

- Y' S I,vF [NI {q;2 )} dS~., x ,  y e a . ,  
6h 

labia = K~p~ ~' ~ [N] r [Nl d6k, X, Y C n., 
6h 

Ib~J = K~.PeE S [NIr[NI {~(k)} [NldSk, X, Y6~., 
8h 

[ r u j  = - -  Le4K~a~'~S [N]r ( 0[N]TOX O[IV]o__..~ -[- O[NITo---7" O[N] ) X, Y6g~a, 

{g~,} = ~. j'[N] T [N] {q](h?} d6k, X, Y6fla. 
6h 
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Fig. 3. Distribution of average heat flow about the shell 
perimeter Q = 80/8n (b) and of the Nusselt number Nu = Q/ 
(0 w - 0) (a) for the linear heat-release regime. T O = 500 K, 
P = 12 MPa: i) C40/C4equ = 0.80; Z = i0; 2) 0.80 and 20; 3) 
0.80 and 50; 4) 1.00 and i0; 5) 1.00 and 20; 6) 1.00 and 50; 
7) i. I0 and i0; 8) i.i0 and 20; 9) C40/C4equ = i.i0, Z = 50. 

The solution of (17) is achieved by a grid method that is based on an unconditionally 
stable explicit-implicit running calculation scheme 

l u H + l  - -  [RI]  {6 } i+1  "~ ( 19 ) . . . . .  {O~b+~. A Fo - + [B~I ~ Z  

This yields a system of nonlinear algebraic equations for the temperature values at the nodes 
of the fine elements of the calculation region at the instant of time (i + i) and in that 
section of the channel along the axial coordinate with the number (j + i), since the matrix 
in (17) and the load vectors in (17) and (18) are nonlinearly dependent on the values of the 
sought functions. The boundary conditions at the boundaries of the calculation region are 
satisfied automatically, while the adjoint conditions at the boundaries separating the media 
are achieved in the light of the very conception of the MFE. 

In order to solve system (17) we use the Newton iteration method. The initial approxi- 
mation is determined from the solution of this system for the matrices and the load vector, 
calculated from the values of the temperature and the concentration in the preceding time 
step by the Gauss method. 

System of equations (18) is solved in analogous fashion. 

As has been demonstrated by calculation, for purposes of determining the temperature 
fields and the concentrations at the (i + l)-th instant of time and in the (j + l)-th cross 
section of the channel along the axis it is convenient to use the following sequence of com- 
putations: i) we solve the diffusion equation [the source term is calculated on the basis 
of the parameters from the i-th time interval and at the (j + l)-th section of the channel]; 
2) on the basis of the temperature from the i-th time step and the derived concentration we 
determine the matrices and the source term for the energy equation; 3) we solve the energy 
equation. The resulting fields of the sought functions are then used as the initial approxi- 
mations for the further realization of the Newton method. After the calculation of the correc- 
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Fig. 4. Distribution of the Nusselt number Nu averaged over 
the shell perimeter for the linear heat-release regime (b) 
and a constant heat-release regime (a) as a function of the 
initial temperature and the inlet pressure: i) C~0/C~e~u = 
0.80, Z = 20, T o = 470 K, P = 12 MPa; 2) 1.00, 20, 470,-and 
12; 3) 1.24, 20, 470, and 12; 4) 0.80, 20, 530, and 12; 5) 
1.00, 20, 530, and 12; 6) 1.05, 20, 530, and 12; 7) 1.12, 20, 
500, and 14; 8) I.i0, i0, 500, and 12; 9) i.i0, 20, 500, and 
12; i0) i.i0, 50, 500, and 12; ii) 0.80, i0, 500, and 12; 12) 
C~0/C4equ = 1.00, Z = i0, T o = 500 K, P = 12 MPa. 

tion factors the ist iteration step is concluded. In the 2nd iteration step we determine 
(in the same sequence of calculations) the correction factors for the temperature fields and 
the concentrations from the ist step, etc. The iteration process is brought to a conclusion 
as soon as the specified accuracy is attained. 

Test calculations of the stationary heat and mass exchange in the case of the laminar 
flow of a nonequilibrium dissociating nitrogen dioxide in a circular tube under boundary con- 
ditions of the I-st kind, carried out to test the feasibility of the developed method, demon- 
strated its high efficiency and accuracy [8]. 

Below we present some of the results from our study of the effect of variable heat re- 
lease in the cores of the fuel cells on the characteristics of the nonstationary heat and 
mass transport in a triangular cluster with a relative pitch of i.i [r I = 2.7 mm (U02) , ~ = 
0.4 mm (KhI8NIOT steel)] for two laws governing heat release, i.e., the linear (A) qv(~) = 
0.Sq0T and the constant (B) qv(T) = q0 = const, where q0 = 0.75"108 W/m~. The values of the 
initial oxygen concentration C~0 in the flow were chosen to be smaller (I), equal to (II), 
and larger than (III) the equilibrium concentration C4equ , determined from the condition of 
chemical equilibrium at the inlet temperature T o and the pressure P in the channel. 

For each of the heat-release regimes with C40 > C4equ a drop in the mean-mass tempera- 
ture of the mixture below the initial temperature is characteristic in the case of small Fo, 
which is a consequence of the predominance at this time of endothermic dissociation reactions 
in the flow (Fig. 2). As the oxygen content increases, the temperature begins to rise because 
of the reduction in the speed of the direct reactions, and because of the heating of the fuel 
cell. The distribution of the Nusselt number over time is monotonic in character (Fig. 3a 
and 4a). The mean-mass concentration of the oxygen in the mixture increases monotonically 
and at a maximum speed. When C~0 = C4equ with a linear law governing the release of heat 
(the II-A regime) for Fourier numbers below 0.i we observe a slight excess in the mean-mass 
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temperature 0 of the flow over the fuel-cell surface temperature @w averaged over the peri- 
meter (Fig. 2a). Moreover, the flows of heat at the surface of the shell at these instants 
of time are negative (Fig. 3b), since the temperature gradient at the surface of the fuel 
cell is directed into the stream. This leads to the appearance of oscillations in the distri- 
bution of the Nusselt number (Fig: 3a). The direct and reverse reactions proceed at speeds 
that are close to each other and C 4 therefore changes insignificantly, particularly in the 
II-A regime. The sharp intensification of these trends is found to occur as the initial 
oxygen concentration is elevated. Characteristic of the III-A regime is a substantial ex- 
cess of O above @w, all the way to Fo = 0.25-0.3 (Fig. 2a), since the core of the fuel cell 
has not yet been significantly heated, while exothermic recombination reactions predominate 
within the gas mixture. The concentration of the oxygen diminishes rapidly, approaching 
equilibrium, and only after Fo = 0.4-0.5 does it begin to increase. The flows of heat at 
the fuel-cell surface attain minimum negative values (Fig. 3b). All of this leads to con- 
siderable oscillations of the distribution in the Nusselt number, in particular, the appear- 
ance of negative peaks (Fig. 3a and Fig. 4b). At the same time, when qv = const the dis- 
tribution of Nu is monotonic (Fig. 4a). The initial temperature T o and the inlet pressure 
P to the channel exert significant influence on the heat-exchange characteristics (Fig. 4b). 

NOTATION 

x, y, z, Cartesian coordinates, m; m, time, sac; T, absolute temperature, K; mz, coolant 
flow velocity, m/sac; qv, volumetric heat-release density in the fuel core, J/(m3-sec); 
C k = pk/p, mass fraction of the k-th component; p, density, kg/m3; Cp, isobaric heat capa- 
city, J/(kg'K); %, thermal conductivity, W/(m'K); p, dynamic viscosity, kg/(m.sec); Dk, 
effective coefficient of the diffusion of the k-th component, m2/sec; mk, molecular mass 
of the, k-th component; m, molecular mass of the mixture; J4, source (flow) of the mass of 
oxygen as a result of the reaction, kg/(m3.sec); KnDII , NO 2 dissociation rate constant, 
cm3/(mole.sec); AHpl, AHDI I and Kcl, Kcll, thermal effect, J/mole, andequilibrium constants 
of the Ist and lind stag~s of the nitrogen tetroxide dissociation reaction; R, universal 
gas constant, J/(kmole'K); Pc, Lel, Le4, Peclet and Lewis numbers; @ = (T - T0)/T0, dimension- 
less temperature; C = C 4 - C40, reduced concentration of 02; r = Cpr/Cpf; Q =' = (~iAHpl + 
AHpll)J~de2/m4kbT0 ; Q ~ = J4cpfde2/kb; Qc = qvde2/~bT0; Kcpi = CpiPi/CpbPb; Kki = ~i/~b, 
i = a, b, c; W = mz/~;~, mean mass flow rate, m/sac; X = xYde; Y = Y/de, Z = z/de, dimension- 
less coordinates; Fo = kbT/CpbPbde 2, Fourier number; de, equivalent channel diameter, m; 
Kr channel form factor. Subscripts: f, "frozen in" component; r, reaction component; 
O, initial value; a , b, c, parameters of the coolant, the shell, and the fuel core; i) 
N204; 2) NO=; 3) NO; 4) Om; I, first reaction stage; II, second stage. 
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